Some constructions of supermagic graphs using antimagic graphs

Jaroslav Ivančo and Andrea Semaničová

(Received November 14, 2005)

Abstract. A graph \(G \) is called supermagic if it admits a labelling of the edges by pairwise different consecutive integers such that the sum of the labels of the edges incident with a vertex, the weight of vertex, is independent of the particular vertex. A graph \(G \) is called \((a,1)\)-antimagic if it admits a labelling of the edges by the integers \(\{1, \ldots, |E(G)|\} \) such that the set of weights of the vertices consists of different consecutive integers. In this paper we will deal with the \((a,1)\)-antimagic graphs and their connection to the supermagic graphs. We will introduce three constructions of supermagic graphs using some \((a,1)\)-antimagic graphs.

AMS 2000 Mathematics Subject Classification. 05C78.

Key words and phrases. Magic graph, supermagic graph, \((a,1)\)-antimagic graph, super edge-magic graph, Cartesian product, join of graphs.

§1. Introduction

We consider finite undirected graphs without loops, multiple edges and isolated vertices. If \(G \) is a graph, then \(V(G) \) and \(E(G) \) stand for the vertex set and edge set of \(G \), respectively.

Let a graph \(G \) and a mapping \(f \) from \(E(G) \) into positive integers be given. The index-mapping of \(f \) is the mapping \(f^* \) from \(V(G) \) into positive integers defined by

\[
f^*(v) = \sum_{e \in E(G)} \eta(v, e) f(e) \quad \text{for every } v \in V(G),
\]

where \(\eta(v, e) \) is equal to 1 when \(e \) is an edge incident with a vertex \(v \), and 0 otherwise. An injective mapping \(f \) from \(E(G) \) into positive integers is called a magic labelling of \(G \) for an index \(\lambda \) if its index-mapping \(f^* \) satisfies

\[
f^*(v) = \lambda \quad \text{for all } v \in V(G).
\]
A magic labelling f of G is called a *supermagic labelling of G* if the set \(\{ f(e) : e \in E(G) \} \) consists of consecutive positive integers. We say that a graph G is *supermagic (magic)* if and only if there exists a supermagic (magic) labelling of G.

The concept of magic graphs was introduced by Sedláček [17]. The regular magic graphs are characterized in [4]. Two different characterizations of all magic graphs are given in [14] and [13]. Supermagic graphs were introduced by Stewart [19]. It is easy to see that the classical concept of a magic square of n^2 boxes corresponds to the fact that the complete bipartite graph $K_{n,n}$ is supermagic for every positive integer $n \neq 2$ (see also [19]). Stewart [20] characterized supermagic complete graphs. In [10] supermagic regular complete multipartite graphs and supermagic cubes are characterized. In [11] there are given characterizations of magic line graphs of general graphs and supermagic line graphs of regular bipartite graphs. In [16] and [1] supermagic labellings of the Möbius ladders and two special classes of 4-regular graphs are constructed. Some constructions of supermagic labellings of various classes of regular graphs are described in [9] and [10]. In [5] there are established some bounds for number of edges in supermagic graph. More comprehensive information on magic and supermagic graphs can be found in [8].

Let G be a graph. A bijective mapping f from $E(G)$ into the set of integers \(\{ 1, 2, \ldots, |E(G)| \} \) is called an *antimagic labelling of G* if the index-mapping f^* is injective, i.e., it satisfies
\[
f^*(v) \neq f^*(u) \quad \text{for every} \quad u, v \in V(G), u \neq v.
\]

The concept of an antimagic labelling was introduced by Hartsfield and Ringel [9]. Bodendiek and Walther [2] introduced the special case of antimagic graphs. For positive integers a, d, a graph G is said to be \((a,d)\)-antimagic, if it admits an antimagic labelling f such that
\[
\{ f^*(v) : v \in V(G) \} = \{ a, a + d, \ldots, a + (|V(G)| - 1)d \}.
\]

Obviously, $a = \frac{|E(G)|(|E(G)| + 1)}{|V(G)|} - \frac{(|V(G)| - 1)d}{2}$ in this case.

In this paper we will deal with the \((a,1)\)-antimagic graphs and their connection to the supermagic graphs. We will introduce three constructions of supermagic graphs using some \((a,1)\)-antimagic graphs.

§2. \((a,1)\)-antimagic graphs

It is known that the cycle C_n and the path P_n on n vertices are \((a,1)\)-antimagic if and only if n is odd, see [3]. To find other \((a,1)\)-antimagic graphs we use the edge-magic graphs which were introduced by Kotzig and Rosa [15].
Let G be a graph. A bijection $f : E(G) ∪ V(G) → \{1, 2, \ldots, |E(G)| + |V(G)|\}$ is called an edge-magic total labelling of G if there is a constant σ such that

$$f(u) + f(uv) + f(v) = \sigma,$$

for every edge $uv \in E(G)$. Moreover, if the vertices are labelled with the values from the set $\{1, 2, \ldots, |V(G)|\}$ we say that G is a super edge-magic graph.

Theorem 2.1. Let G be a 2-regular graph. Then G is super edge-magic if and only if it is $(a, 1)$-antimagic.

Proof. Evidently, there is a digraph \tilde{G} which we get from G by an orientation of its edges such that the outdegree of every vertex of \tilde{G} is equal to 1. Let $[u, v]$ denote an arc of \tilde{G}.

Suppose that f is a super edge-magic labelling of G. Then the labelling g, defined by $g(uv) = f(u)$ for every arc $[u, v]$ of \tilde{G}, is $(a, 1)$-antimagic.

Assume that g is an $(a, 1)$-antimagic labelling of G. Then the labelling f, defined by $f(u) = g(uv)$ for every arc $[u, v]$ of \tilde{G} and $f(uv) = (5|V(G)| + 3)/2 - f(u) - f(v)$, is super edge-magic. \qed

According to the previous theorem and a corresponding result for super edge-magic graphs proved in [12] we have the following statement.

Corollary 2.2. Let kG be a disjoint union of k copies of a graph G. If G is a 2-regular $(a_1, 1)$-antimagic graph, then kG is $(a_2, 1)$-antimagic for every odd positive integer k.

Using the previous assertions and results on super edge-magic unions of two cycles (see [6]) we have

Corollary 2.3. Let k, n and m be positive integers. For k odd each of the following graphs is $(a, 1)$-antimagic

(i) kC_n if $3 \leq n \equiv 1 \pmod{2}$,

(ii) $k(C_3 \cup C_n)$ if $6 \leq n \equiv 0 \pmod{2}$,

(iii) $k(C_4 \cup C_n)$ if $5 \leq n \equiv 1 \pmod{2}$,

(iv) $k(C_5 \cup C_n)$ if $4 \leq n \equiv 0 \pmod{2}$,

(v) $k(C_m \cup C_n)$ if $6 \leq m \equiv 0 \pmod{2}$, $n \equiv 1 \pmod{2}$, $n \geq m/2 + 2$.

Graphs G_1, G_2 form a decomposition of a graph G if $V(G_1) = V(G_2) = V(G)$, $E(G_1) \cap E(G_2) = \emptyset$ and $E(G_1) \cup E(G_2) = E(G)$. If G_2 is an r-regular graph then we say that the graph G arose from G_1 by adding the r-factor G_2. At IWOGL held in Herľany 2005 Petr Kovář presented an interesting method
of construction of vertex-magic and antimagic total labellings of graphs (for
definitions see [7]). However, this idea can be also used for \((a, d)\)-antimagic
graphs.

Theorem 2.4. Let \(k\) be a positive integer and let \(H\) be a graph which arose
from a graph \(G\) by adding an arbitrary \(2k\)-factor. If \(G\) is an \((a_1, 1)\)-antimagic
graph, then \(H\) is also \((a_2, 1)\)-antimagic.

Proof. As every \(2k\)-regular graph is decomposable into \(k\) edge-disjoint
\(2\)-factors, it is sufficient to consider that \(H\) arose from \(G\) by adding a
\(2\)-factor \(F\). Let \(\tilde{F}\) be a digraph which we get from \(F\) by an orientation
of its edges such that the outdegree of every vertex of \(\tilde{F}\) is equal to 1. Let \([u, v]\) denote
an arc of \(\tilde{F}\).

The graph \(G\) is \((a_1, 1)\)-antimagic and so there is its \((a_1, 1)\)-antimagic
labelling \(f\), where \(a_1 = \min\{f^*(v) : v \in V(G)\}\). Consider a mapping \(h : E(H) \rightarrow \{1, 2, \ldots, |E(H)|\}\) defined by

\[
h(e) = \begin{cases} f(e) & \text{if } e \in E(G), \\ a_1 + |E(H)| - f^*(u) & \text{if } e = uv \in E(F) \text{ and } [u, v] \text{ is an arc of } \tilde{F}.
\end{cases}
\]

It is easy to see that \(h\) is a bijection and \(h^*(v) = a_1 + |E(H)| + h(uv)\),
where \([u, v]\) is an arc of \(\tilde{F}\). As \(\{h(e) : e \in E(F)\} = \{|E(G)| + 1, |E(G)| + 2, \ldots, |E(H)|\}\), the labelling \(h\) is \((a_2, 1)\)-antimagic, where
\(a_2 = a_1 + |E(H)| + |E(G)| + 1\).

Let \(n, m\) and \(1 \leq a_1 < \cdots < a_m \leq \left\lfloor \frac{n}{2} \right\rfloor\) be positive integers. A graph
\(C_n(a_1, \ldots, a_m)\) with the vertex set \(\{v_1, \ldots, v_n\}\) and the edge set \(\{v_i v_{i+a_j} : 1 \leq i \leq n, 1 \leq j \leq m\}\), the indices are being taken modulo \(n\), is called a *circulant
graph*. Clearly, \(C_n(a_1, \ldots, a_m)\) arose from \(C_n(a_m)\) by adding a \(2(m - 1)\)-factor.
Moreover, if \(n\) is odd, then \(C_n(a_m)\) is an \((a, 1)\)-antimagic graph because it is
isomorphic to \(kC_r\), where \(k\) and \(r\) are odd. Therefore, we have immediately

Corollary 2.5. Every circulant graph of odd order is \((a, 1)\)-antimagic.

The cycle of odd order is \((a, 1)\)-antimagic and every regular Hamiltonian
graph arose from its Hamilton cycle by adding a factor, so

Corollary 2.6. Every \(2r\)-regular Hamiltonian graph of odd order is \((a, 1)\)-
antimagic.

Any graph of order \(n\) with minimum degree at least \(n/2\) is Hamiltonian,
thus we get

Corollary 2.7. Let \(G\) be a \(2r\)-regular graph of odd order \(n\). If \(n < 4r\), then
\(G\) is \((a, 1)\)-antimagic.
§3. Supermagic graphs

For any graph G we define a graph G° by $V(G^{\circ}) = \bigcup_{v \in V(G)} \{v^0, v^1\}$ and $E(G^{\circ}) = E_1(G^{\circ}) \cup E_2(G^{\circ})$, where $E_1(G^{\circ}) = \bigcup_{u,v \in E(G)} \{v^0u^1, v^1u^0\}$ and $E_2(G^{\circ}) = \bigcup_{v \in V(G)} \{v^0v^1\}$.

Theorem 3.1. Let G be an $(a,1)$-antimagic $2r$-regular graph. Then G° is a supermagic graph.

Proof. Put $n := |V(G)|$. As G is a $2r$-regular graph, every its component is Eulerian. Therefore, there is a digraph $	ilde{G}$ which we get from G by an orientation of its edges such that the outdegree (and also the indegree) of every vertex of $	ilde{G}$ is equal to r. By $[u,v]$ we denote an arc of $	ilde{G}$ and by $N^+(v)$, $N^-(v)$ the outneighbourhood, inneighbourhood of a vertex v in $	ilde{G}$, respectively.

Let $f : E(G) \rightarrow \{1, 2, \ldots, rn\}$ be an $(a,1)$-antimagic labelling of G. Consider the bijection $g : E_1(G^{\circ}) \rightarrow \{1, 2, \ldots, 2rn\}$ given by

$$g(u^iv^j) = \begin{cases} f(uv) & \text{if } i = 0, j = 1, \\ f(uv) + rn & \text{if } i = 1, j = 0, \end{cases}$$

for every arc $[u,v]$ of $	ilde{G}$.

For its index-mapping we have

$$g^*(v^0) = \sum_{w \in N^+(v)} g(v^0w^1) + \sum_{u \in N^-(v)} g(u^1v^0)$$

$$= \sum_{w \in N^+(v)} f(uw) + \sum_{u \in N^-(v)} (f(uv) + rn) = f^*(v) + r^2 n$$

for every vertex $v^0 \in V(G^{\circ})$. Similarly, we have $g^*(v^1) = f^*(v) + r^2 n$ for every vertex $v^1 \in V(G^{\circ})$. Thus $g^*(v^0) = g^*(v^1) = f^*(v) + r^2 n$ for every vertex $v \in V(G)$. As f is an $(a,1)$-antimagic labelling, the set $\{f^*(v) : v \in V(G)\}$ consists of consecutive integers. It means that the bijection $h : E(G^{\circ}) \rightarrow \{1, 2, \ldots, (2r + 1)n\}$, given by

$$h(u^iv^j) = g(u^iv^j) \quad \text{for } u^iv^j \in E_1(G^{\circ}),$$

$$h(v^0v^1) = \frac{2rn(r + 1) + (2r + 1)(n + 1)}{2} - f^*(v) \quad \text{for } v \in V(G),$$

is a supermagic labelling of G°. \hfill \Box
Note, that C_n^m is a graph isomorphic to either the Möbius ladder M_{2n}, for n odd, or the graph of n-side prism S_n, for n even. Moreover, for the disjoint union of graphs G_1 and G_2 it holds $(G_1 \cup G_2)^{\infty} = G_1^{\infty} \cup G_2^{\infty}$. According to Theorem 3.1 and Corollary 2.3 we have

Corollary 3.2. Let k, n and m be positive integers. For k odd the following graphs are supermagic

(i) kM_{2n} when $3 \leq n \equiv 1 \pmod{2}$,

(ii) $k(M_6 \cup S_n)$ when $6 \leq n \equiv 0 \pmod{2}$,

(iii) $k(S_4 \cup M_{2n})$ when $5 \leq n \equiv 1 \pmod{2}$,

(iv) $k(M_{10} \cup S_n)$ when $4 \leq n \equiv 0 \pmod{2}$,

(v) $k(S_m \cup M_{2n})$ when $6 \leq m \equiv 0 \pmod{2}$, $n \equiv 1 \pmod{2}$, $n \geq m/2 + 2$.

Similarly, using Theorem 3.1 and Corollaries 2.5, 2.6 and 2.7 we get

Corollary 3.3. Let G be a $2r$-regular graph of odd order n. If G is circulant, Hamiltonian or $n < 4r$, then G^{∞} is a supermagic graph.

One can see that G^{∞} is isomorphic to the Cartesian product $G \times K_2$ whenever G is a bipartite graph. However, a regular bipartite graph of even degree is never $(a,1)$-antimagic. So, in the next theorem we describe another construction of supermagic Cartesian products.

Theorem 3.4. Let G be an $(a,1)$-antimagic graph decomposable into two edge-disjoint r-factors. Then $G \times K_2$ is a supermagic graph.

Proof. Suppose that F^1_1, F^2_1 are edge-disjoint r-factors which form a decomposition of G and $f : E(G) \rightarrow \{1,2,\ldots, rn\}$, where $n = |V(G)|$, is an $(a,1)$-antimagic labelling of G.

We can denote the vertices of $G \times K_2$ by $v_i, i \in \{1,2\}, v \in V(G)$, in such a way that the vertices $\{v_i : v \in V(G)\}$ induce a subgraph G_i isomorphic to G. So, $G \times K_2$ consists of subgraphs G_1, G_2 and n edges v_1v_2 for all $v \in V(G)$. By $F^j_i, i \in \{1,2\}, j \in \{1,2\}$, we denote the factor of G_i corresponding to F^j_i.

Consider the bijection $g : E(G_1 \cup G_2) \rightarrow \{1,2,\ldots, 2rn\}$ given by

$$g(e) = \begin{cases} f(e) & \text{if } e \in F^1_1 \text{ or } e \in F^2_1, \\ f(e) + rn & \text{if } e \in F^1_2 \text{ or } e \in F^2_2. \end{cases}$$
Theorem 3.6. Let G be a r-regular graph of odd order n. If G is circulant, Hamiltonian or $n < 8r$, then $G \oplus K_2$ is a supermagic graph.

As every 4r-regular graph is decomposable into two edge-disjoint 2r-factors, immediately from Theorem 3.4 and Corollaries 2.5, 2.6 and 2.7 we get

Corollary 3.5. Let G be a 4r-regular graph of odd order n. If G is circulant, Hamiltonian or $n < 8r$, then $G \oplus K_2$ is a supermagic graph.

Finally we describe a construction of supermagic joins $G \oplus K_1$. In [18] there are given some conditions for the existence of such graphs.

Theorem 3.6. Let G be an $(a, 1)$-antimagic r-regular graph of order n. If $(n - r - 1)$ is a divisor of the non-negative integer $a + n(1 + r - \frac{n+1}{2})$, then the join $G \oplus K_1$ is a supermagic graph.

Proof. Put $\lambda_1 := a + n(1 + r)$ and $\lambda_2 := \frac{a(n+1)}{2}$. According to the assumption there is a non-negative integer p such that $\lambda_1 - \lambda_2 = p(n - r - 1)$ (thus $(r + 1)p + \lambda_1 = np + \lambda_2$). Let f be an $(a, 1)$-antimagic labelling of G. The join $G \oplus K_1$ is obtained from G by adding the vertex w and the edges vw for all $v \in V(G)$.

Consider the mapping h from $E(G \oplus K_1)$ into positive integers given by

$$h(e) = \begin{cases} p + n + f(e) & \text{if } e \in E(G), \\ p + n + a - f^*(v) & \text{if } e = vw \text{ for } v \in V(G). \end{cases}$$
Evidently, \(\{h(wv) : v \in V(G)\} = \{p + 1, p + 2, \ldots, p + n\} \) and \(\{h(e) : e \in E(G)\} = \{p + n + 1, p + n + 2, \ldots, p + n + |E(G)|\} \). Thus, the set \(\{h(e) : e \in E(G \oplus K_1)\} \) consists of consecutive positive integers. Moreover, \(h^*(w) = np + \lambda_2 \) and \(h^*(v) = (r+1)p + \lambda_1 \) for all \(v \in V(G) \). Therefore, \(h \) is a supermagic labelling of \(G \oplus K_1 \).

Using the divisibility it is not difficult to check the assumptions of Theorem 3.6 for given values \(n \) and \(r \). Thus we have

Corollary 3.7. Let \(n \) and \(r \) be positive integers such that one of the following conditions is satisfied:

(i) \(5 \leq n \equiv 1 \pmod{2} \) and \(r = n - 3 \),

(ii) \(11 \leq n \equiv 1 \pmod{2} \) and \(r = n - 7 \),

(iii) \(8 \leq n \equiv 0 \pmod{4} \) and \(r = \frac{n}{2} - 1 \),

(iv) \(11 \leq n \equiv 3 \pmod{8} \) and \(r = n - 5 \),

(v) \(12 \leq n \equiv 4 \pmod{8} \) and \(r = n - 3 \),

(vi) \(12 \leq n \equiv 4 \pmod{8} \) and \(r = n - 7 \),

(vii) \(13 \leq n \equiv 5 \pmod{8} \) and \(r = n - 5 \).

If \(G \) is an \((a,1)\)-antimagic \(r \)-regular graph of order \(n \), then the join \(G \oplus K_1 \) is supermagic.

Immediately from Corollaries 2.7 and 3.7 we get

Corollary 3.8. Let \(G \) be any \((n-3)\)-regular \((n-7)\)-regular) graph of odd order \(n \geq 7 \) \((n \geq 15)\). Then \(G \oplus K_1 \) is a supermagic graph.

Acknowledgement

Support of the Slovak VEGA Grant 1/0424/03 and Slovak Grant APVT-20-004104 are acknowledged.

References

CONSTRUCTIONS OF SUPERMAGIC GRAPHS

